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SUMMARY

This paper discusses the development of a high-order, multidomain-based large-eddy simulation (LES)
methodology for compressible flows. The LES model equations are approximated on unstructured grids
of non-overlapping hexahedral sub-domains providing geometric flexibility. In each domain a high-order
Chebyshev polynomial approximation represents the solution ensuring a highly accurate approximation
with little numerical dispersion and diffusion. The sub-grid scale stress in the filtered LES equations is
modeled with a dynamic eddy-viscosity model, while the heat flux is represented with an eddy diffusivity
model, employing a turbulent Prandtl number. The model constants are evaluated through a flexible
dynamic procedure that uses a high-order domain level filtering for the discrete test filter. The LES
methodology is tested in a decaying isotropic turbulence and a channel flow. The LES method improves
the resolution of the turbulence spectrum as compared with a direct numerical simulation (DNS) with the
same method at the same grid resolution. The averaged and second-order statistics for LES computations
are in close agreement with published results and resolved DNS. The high-order LES methodology requires
fewer degrees of freedom as compared with lower-order LES methodologies to accurately resolve the
turbulent flows. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Large-eddy simulation (LES) has proven to be a viable technique for the computation of unsteady
turbulent flows with large coherent structures in real complex applications. At moderate Reynolds

∗Correspondence to: F. Mashayek, Department of Mechanical and Industrial Engineering, University of Illinois at
Chicago, 842 West Taylor, Chicago, IL 60607, U.S.A.

†E-mail: mashayek@uic.edu

Contract/grant sponsor: U.S. Office of Naval Research

Copyright q 2008 John Wiley & Sons, Ltd.



312 K. SENGUPTA, G. B. JACOBS AND F. MASHAYEK

numbers, LES is more economical and/or accurate than other established computational tech-
niques such as direct numerical simulation (DNS) and Reynolds-averaged Navier–Stokes (RANS)
methods. DNS solves the governing equations without any turbulence modeling. Though it is
accurate, DNS requires excessive computational cost to resolve the increasing turbulence scale
range with increasing geometric complexity and Reynolds number. In RANS, on the other hand,
all unsteady turbulence scales are modeled. While this reduces computational cost and enables the
computation of most engineering applications, it also prevents RANS from adequately capturing the
true dynamics of the flow. LES bridges the gap between DNS and RANS and efficiently computes
unsteady turbulent flows in moderately complex geometries at midrange Reynolds numbers found
in many real applications. LES is based on scale separation in turbulent flows. The large scales,
which are anisotropic and sensitive to boundary conditions, are computed directly as in DNS,
while the small scales that are more isotropic and universal are modeled. The modeling of the
small scales reduces the computational cost, while the computation of the large scales provides
detailed flow field information.

Numerical schemes are crucially affecting the fidelity of LES. Numerical errors in space and time
can smear the solutions, overly dissipate turbulence, and thus lead to an inaccurate computation
of the turbulent flow. Ghosal [1] performed an analysis of the effect of numerical errors of a finite
difference method on LES. He found that for low-order finite difference schemes, the truncation
error may be larger than modeled sub-grid stresses, unless the filter width is significantly larger
than the grid size. Kravchenko and Moin [2] later extended the analysis to include the role of
aliasing errors. It was shown that for low-order finite differences, the high-wavenumber part of the
energy spectrum is heavily distorted by truncation errors and the contribution from the sub-grid
model becomes small. In addition, low-order schemes have large dispersion errors, which reduce
the temporal accuracy of unsteady (wave-dominated) flow computations.

With a high-order scheme, many of the numerical error-related inaccuracies of lower-order
schemes can be reduced and fewer degrees of freedom are required for an accurate solution.
However, combining high-order accuracy with other desirable properties of an LES method
including geometric flexibility and conservation properties has proven to be challenging. Conser-
vative, low-order finite volume [3, 4] and finite element [5] methods have been developed, which
allow for complex geometry computation, but the geometric flexibility of the current high-order
LES, which mostly relies on spectral and compact finite difference methods [6], is limited. Single
domain spectral methods based on, for example, Fourier series approximations have desirable
high-wavenumber characteristics, but can only be used for rectangular geometries. Compact finite
difference methods are more versatile than the single domain spectral schemes. However, the
block Cartesian mesh requirement and overlapping stencil of compact difference methods compli-
cate both boundary condition implementation and an accurate, robust, parallel implementation for
complex geometries. Another drawback of the high accuracy of both spectral and high-order finite
difference methods is that aliasing errors affect the stability of the methods. Aliasing errors can
be reduced by a modified form of the non-linear advection terms [7] or by using non-conservative
form of the energy equation [8]. Unfortunately, these modifications do not guarantee robustness
especially at high Mach numbers.

Spectral element methods [9, 10] are excellent candidates for LES since they combine the
accuracy of single domain spectral schemes with the flexibility of finite element method. In spectral
elements the spatial resolution can be conveniently altered either by increasing the number of
elements (h-refinement) or by increasing the polynomial order within the elements (p-refinement).
In smooth solution spaces, the method provides asymptotically exponential rate of spatial
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convergence with p-refinement. Low dispersion errors in these methods lead to high temporal
accuracy, making them suitable for wave-dominated, unsteady problems. Moreover, low degree
of data connectivity between non-overlapping elements facilitates efficient boundary condition
application and parallel implementation.

Though spectral/hp element-based DNS computations are well established, there have been
limited attempts to perform spectral element-based LES. Spectral element filtering strategies for
LES were studied by Blackburn and Schmidt [11]. They investigated three different filtering
techniques within two-dimensional spectral elements for the simulation of incompressible turbulent
channel flow with a dynamic sub-grid model. Fischer and Mullen [12] introduced a spectral element
filtering technique to stabilize their DNS. Levin et al. [13] applied a two-step filtering procedure to
control the growth of non-linear instabilities in their eddy resolving spectral element ocean model.
A combined spectral element-Fourier method was used by Karamanos [14] for LES with an explicit
sub-grid model. Karamanos and Karniadakis [15] introduced spectral vanishing viscosity concept
for LES. The implementation was tested for turbulent channel flow using Fourier discretization in
the streamwise direction and spectral/hp quadrilateral elements in the cross flow and wall-normal
directions. These studies have focused on LES of incompressible flows. To the best of the authors’
knowledge there has not been any published work on LES of compressible flows using spectral
element method.

In this paper, we develop a spectral/hp element LES technique for compressible flows using a
Chebyshev spectral multidomain method [16–18]. The method combines many features that are
desirable in a numerical methodology for LES of turbulent flows in complex geometries, including:
a high-order approximation within each sub-domain, which restricts the numerical errors; complex
geometries are easily computed with the unstructured hexahedral grid; the method is robust;
the flux-based methodology leads to a conservative scheme; and the non-overlapping elements
yield perfect parallelization implementation as well as easy boundary condition implementation.
We model the sub-grid scales using an eddy-viscosity model. A flexible dynamic procedure is
employed to evaluate the sub-grid model constants. The explicit filtering associated with the
dynamic procedure is accomplished through a sub-domain-based high-order Lagrange-interpolant-
projection procedure consistent with the high-order multidomain method. The characteristics of
the LES methodology are tested in a decaying isotropic turbulence and a turbulent channel flow.

This paper is organized as follows. First, we describe the governing equations for compressible
flows and present the numerical method. Then, we discuss the LES formulation including the
filtered equations, the sub-grid models, and the dynamic procedure. Next, we test our methodology
in an isotropic turbulence and a turbulent channel flow. Conclusions and recommendations are
reserved for the final section.

2. GOVERNING EQUATIONS AND NUMERICAL FORMULATION

2.1. Compressible Navier–Stokes equations

The governing equations for the compressible and viscous fluid flow are the conservation statements
for mass, momentum, and energy. They are presented in non-dimensional, conservative form with
Cartesian tensor notation:

��

�t
+ �(�u j )

�x j
=0 (1)
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�(�ui )

�t
+ �(�uiu j + p�i j )

�x j
= ��i j

�x j
(2)

�(�e)

�t
+ �[(�e+ p)u j ]

�x j
=−�q j

�x j
+ �(�i j ui )

�x j
(3)

The total energy, viscous stress tensor, and heat flux vector are, respectively, given as

�e= p

�−1
+ 1

2
�ukuk (4)

�i j = �

Re f

(
�ui
�x j

+ �u j

�xi
− 2

3

�uk
�xk

�i j

)
(5)

q j =− �

(�−1)Re f Pr f M2
f

�T
�x j

(6)

The reference Reynolds number Re f is based on the reference density �∗
f , velocity U

∗
f , length L∗

f ,
and molecular viscosity �∗

f and is given by Re f =�∗
f U

∗
f L

∗
f /�

∗
f . Pr f =�∗

f Cp/k∗ is the reference
Prandtl number. The superscript ∗ denotes dimensional quantities. The above equation set is closed
by the equation of state

p= �T

�M2
f

(7)

where M f is the reference Mach number, taken to be 1 in this work. The conservation equations
can be cast in the matrix form:

�Q
�t

+ �Fa
i

�xi
− �Fv

i

�xi
=0 (8)

where

Q=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

�

�u1

�u2

�u3

�e

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(9)

Fa
i =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

�ui

�u1ui + p�i1

�u2ui + p�i2

�u3ui + p�i3

(�e+ p)ui

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(10)
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Fv
i =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0

�i1

�i2

�i3

−qi +uk�ik

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(11)

Here Q is the vector of the conserved variables, while Fa
i and Fv

i are the advective and viscous
flux vectors, respectively, in the xi direction.

2.2. Numerical methodology

This section briefly describes the staggered-grid Chebyshev multidomain method. For a more
complete description of the method, see [16, 18]. In this method, the computational domain, �, is
divided into non-overlapping hexahedral sub-domains, Dk :

�=∑
Dk (12)

The sub-domains are mapped onto a unit hexahedron Dk ↔[0,1]×[0,1]×[0,1] by an isopara-
metric mapping [19]. Isoparametric mapping ensures that the spectral accuracy of the scheme is
not affected by the domain boundary approximation. The staggered-grid method uses two sets
of grids, one for the solution (Chebyshev–Gauss grid) and another for the computation of the
fluxes (Chebyshev–Gauss–Lobatto grids). In one space dimension the Gauss and Gauss–Lobatto
quadrature points are defined by

X j+1/2= 1

2

{
1−cos

[
(2 j+1)�

2N

]}
, j =0, . . . ,N−1 (13)

and

X j = 1

2

{
1−cos

[
� j

N

]}
, j =0, . . . ,N (14)

respectively, on the unit interval [0,1]. The Gauss grid in three dimensions, henceforth referred to
as the ggg grid, is the tensor product of the one-dimensional grid defined in Equation (13). The
solution vector, Q̃, where the tilde denotes mapped space, is approximated on the ggg grid as

Q̃ggg(X,Y, Z)=
N−1∑
i=0

N−1∑
j=0

N−1∑
k=0

Q̃ggg
i+1/2, j+1/2,k+1/2hi+1/2(X)h j+1/2(Y )hk+1/2(Z) (15)

where N−1 is the approximation order. Here hi+1/2∈PN−1 is the Lagrange interpolating
polynomial defined on the Gauss grid:

hi+1/2(�)=
N−1∏

m=0,m �=i

(
�−Xm+1/2

Xi+1/2−Xm+1/2

)
(16)

The fluxes in each direction Fi are defined on the Gauss–Lobatto grids shown in Figure 1.
The x-direction flux (F1) is evaluated at the Lobatto–Gauss–Gauss grid (lgg) denoted by open
squares, (Xi ,Y j+1/2, Zk+1/2), i=0,1, . . . ,N , j,k=0,1, . . . ,N−1, the y-direction flux (F2) at the
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X

Z

Y

Figure 1. Staggered arrangement of solution variable and fluxes: closed circles—ggg points,
open squares—lgg points, open circles—glg points, closed squares—ggl points.

Gauss–Lobatto–Gauss grid (glg) denoted by open circles, (Xi+1/2,Y j , Zk+1/2), j =0,1, . . . ,N ,
i,k=0,1, . . . ,N−1, and the z-direction flux (F3) at the Gauss–Gauss–Lobatto grid (ggl) denoted
by closed squares, (Xi+1/2,Y j+1/2, Zk), k=0,1, . . . ,N , i, j =0,1, . . . ,N−1. The flux vectors
are computed by reconstructing the solution at the Lobatto points through interpolations using
polynomials of the type in Equation (15). The interpolation operation is given as

Qlgg(Xi ,Y j+1/2, Zk+1/2) =
N−1∑
m=0

N−1∑
n=0

N−1∑
p=0

Q̃ggg
m+1/2,n+1/2,p+1/2

Jm+1/2,n+1/2,p+1/2
hm+1/2(Xi )

×hn+1/2(Y j+1/2)h p+1/2(Zk+1/2) (17)

in the x direction, which reduces to a one-dimensional operation

Qlgg(Xi ,Y j+1/2, Zk+1/2)=
N−1∑
m=0

Q̃ggg
m+1/2, j+1/2,k+1/2

Jm+1/2, j+1/2,k+1/2
hm+1/2(Xi ) (18)

due to the cardinal property of the Lagrange interpolating polynomial. Similarly for the y and z
directions the interpolants are given by

Qglg(Xi+1/2,Y j , Zk+1/2)=
N−1∑
n=0

Q̃ggg
i+1/2,n+1/2,k+1/2

Ji+1/2,n+1/2,k+1/2
hn+1/2(Y j ) (19)

Qggl(Xi+1/2,Y j+1/2, Zk)=
N−1∑
p=0

Q̃ggg
i+1/2, j+1/2,p+1/2

Ji+1/2, j+1/2,p+1/2
h p+1/2(Zk) (20)

where J is the Jacobian of transformation from the physical space to the mapped space. Once the
solution values are interpolated to the Lobatto grid, the advective fluxes are computed. The interface
points will have different flux values due to discontinuity of solution values at the sub-domain
boundaries. The patching of the advective fluxes is described later. The viscous fluxes are computed
in two steps. The solution interpolant at the Lobatto grids must be continuous for a unique first
derivative at the sub-domain interfaces. This is ensured by a Dirichlet patching or averaging of the
solution on both sides of the interface. After the Lobatto interpolants for the solution values are
patched, their derivatives are computed at the Gauss points. The gradients are then interpolated
back to the Lobatto points. The viscous fluxes are computed using the functional relations (5) and
(6). The interface condition for viscous fluxes and any Neumann boundary condition are applied
at this point. Finally, the total flux is obtained by adding the inviscid and viscous parts. Once the
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total fluxes are computed at the lgg, glg, and ggl points, the flux interpolants are constructed as

F̃1(X,Y, Z)=
N∑

m=0

N−1∑
n=0

N−1∑
p=0

F̃1m,n+1/2,p+1/2lm(X)hn+1/2(Y )h p+1/2(Z) (21)

F̃2(X,Y, Z)=
N−1∑
m=0

N∑
n=0

N−1∑
p=0

F̃2m+1/2,n,p+1/2hm+1/2(X)ln(Y )h p+1/2(Z) (22)

F̃3(X,Y, Z)=
N−1∑
m=0

N−1∑
n=0

N∑
p=0

F̃3m+1/2,n+1/2,phm+1/2(X)hn+1/2(Y )l p(Z) (23)

These fluxes are differentiated and evaluated at the ggg grid to give pointwise derivatives:

�F̃1(Xi+1/2,Y j+1/2, Zk+1/2)

�X
=

N∑
m=0

F̃1(Xm,Y j+1/2, Zk+1/2)
�lm(Xi+1/2)

�X
(24)

�F̃2(Xi+1/2,Y j+1/2, Zk+1/2)

�Y
=

N∑
n=0

F̃2(Xi+1/2,Yn, Zk+1/2)
�ln(Y j+1/2)

�Y
(25)

�F̃3(Xi+1/2,Y j+1/2, Zk+1/2)

�Z
=

N∑
p=0

F̃3(Xi+1/2,Y j+1/2, Z p)
�l p(Zk+1/2)

�Z
(26)

Finally, the semi-discrete equation for the solution unknowns at the ggg grid is given by[
dQ̃
dt

]
i+1/2, j+1/2,k+1/2

+
[

�F̃i

�Xi

]
i+1/2, j+1/2,k+1/2

=0 (27)

which is advanced in time using a fourth-order low storage Runge–Kutta scheme.

2.3. Interface and boundary treatment

Interpolation of the solution by Equations (18)–(20) leads to different solution values at the sub-
domain interface points, one from each of the contributing sub-domains. The solution is therefore
discontinuous. The coupling between sub-domains is enforced by continuous advective and viscous
fluxes at the interface points. Enforcing flux continuity yields a conservative method. The inviscid
fluxes are computed using an approximate Riemann solver. Formally, given the two solution states
Qk−1

N and Qk
0 (the superscript denotes the sub-domain number and the subscript denotes the node

number within a sub-domain), the flux in each spatial direction, with the assumption that waves
are normal to the interface, can be expressed as

�a(Qk−1
N ,Qk

0)= 1
2 [Fa(Qk−1

N )+Fa(Qk
0)]− 1

2R|	|R−1(Qk
0−Qk−1

N ) (28)

where Fa is the vector of advective fluxes. R is the matrix of the right eigenvectors of the Jacobian
of Fa computed using Roe-average ofQk−1

N andQk
0. For imposing inviscid boundary conditions, the

physical boundary can be viewed as an interface between the external state and the computational
domain. The Riemann solver is applied between the external specified flow solution and the
internal solution vector. The above treatment of the advective fluxes is similar to that employed in
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discontinuous Galerkin methods (e.g. [20]). However, there is a subtle but important difference.
Unlike the strong form of the discontinuous Galerkin formulation, where an explicit numerical
flux appears in the boundary integral, the spectral multidomain method here does not involve any
numerical flux. Also, the interface treatment here does not include any parameter to control the
stability such as that used in the multidomain penalty method of Diamessis et al. [21]. The upwind
approximate Riemann solver by Roe introduces dissipation at the sub-domain interfaces that is
stabilizing.

The viscous fluxes are determined as outlined in the previous sub-section. Continuity of the
viscous fluxes is established by averaging the viscous flux vector from both sides of the interface:

�v,k
0 =�v,k−1

N = 1
2 (F

v,k
0 +Fv,k−1

N ) (29)

The above treatment follows the work of Bassi and Rebay [22] and is also commonly used in
discontinuous Galerkin methods for compressible flows [20, 23]. The Neumann boundary condi-
tions are imposed at the boundary points at this stage.

3. LES FORMULATION

3.1. Filtered Navier–Stokes equations

The LES method presented here solves the filtered Navier–Stokes equations. By applying a spatial
low-pass (in frequency domain) convolution filter to the Navier–Stokes equations, the turbulence
scales are separated. The filter in physical space is represented by the following convolution
product:

f̄ (x, t)=
∫

�
f (x′, t)G(x−x′)dx′ (30)

where G is the filter kernel and � represents the flow domain. We apply the Favre, density weighted
filtering operation, typical for LES of compressible turbulence:

f̃ = � f

�̄
(31)

where overbar denotes the filtering operation.
Applying this filter yields the following filtered conservation equations:

��̄

�t
+ �(�̄ũ j )

�x j
=0 (32)

�(�̄ũi )

�t
+ �(�̄ũi ũ j + p̄�i j )

�x j
= ��̃i j

�x j
− �
sgsi j

�x j
+ �(�̄i j − �̃i j )

�x j
(33)

�(�e)

�t
+ �[(�e+ p̄)ũ j ]

�x j
= −�q̃ j

�x j
+ �(�̃i j ũi )

�x j
− 1

(�−1)M2
f

�qsgsj

�x j
+ �(q̄ j − q̃ j )

�x j

+�(ũ j [�̄ jk− �̃ jk])
�xk

+ 1

2

�
�x j

�̄(ũkuku j − ũk ũk ũ j −
sgskk ũ j ) (34)
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The filtering leads to several terms in Equations (33) and (34) that require closure. 
sgsi j is the sub-

grid scale stress tensor and qsgsj is the sub-grid turbulent heat flux. The sub-grid terms physically
represent the effect of the unresolved (sub-grid) scales on the resolved scales. The second unclosed
term in the filtered momentum equation is (�̄i j − �̃i j ), which results from Favre filtering of the
viscous stresses. The filtered energy equation has three more unclosed terms in addition to the
sub-grid heat flux: the term �(q̄ j − q̃ j )/�x j that results from the Favre filtering of the diffusive heat
flux; the term �(ũ j [�̄ jk− �̃ jk])/�xk that is analogous to the sub-grid scale viscous dissipation; and
finally the divergence of turbulent diffusion, 1

2 (�/�x j )�̄(ũkuku j − ũk ũk ũ j −
sgskk ũ j ). The modeling
of the unclosed terms is discussed in Section 3.2.

3.2. Sub-grid scale model

The unclosed terms in the filtered equations require modeling. We first consider the modeling of
the unclosed terms in the momentum equation (Equation (33)). The term (�̄i j − �̃i j ) is neglected
following [24, 25]. The sub-grid term 
sgsi j = �̄(ũi u j − ũi ũ j ) is modeled using the modification of
the Germano model [26] for compressible flows (given by Moin et al. [8]). The expression for

sgsi j is accordingly given as


sgsi j =−2Cs�̄2�̄|S̃|(S̃i j − 1
3 S̃mm�i j )+ 1

3

sgs
kk �i j (35)

The trace of the sub-grid stress tensor 
sgskk cannot be included in the modified pressure in compress-
ible flow, and thus has to be modeled separately. Different models of 
sgskk have been proposed (see
[27, 28]). However, the study by Squires [29] demonstrated that there is no difference in the LES
results of compressible isotropic turbulence at low Mach number when 
sgskk is neglected. Vreman
et al. [30] confirmed the above findings with their simulation of three-dimensional compressible
mixing layers at a mean convective Mach number of 0.2. In their a priori test, the sub-grid scale
(SGS) model that neglects 
sgskk was found to be in better agreement with DNS results. Moreover,
simulations conducted with a dynamic model for 
sgskk were often unstable for the cases studied by
Vreman et al. [30]. Therefore, in LES of low Mach number flow, neglecting the trace of sub-grid
stress tensor will not introduce large errors. We will therefore neglect the term here. The details
of the dynamic procedure to obtain the estimate for Cs�̄2 are provided in Section 3.3.

The sub-grid term

qsgsj = �̄(T̃ u j − T̃ ũ j ) (36)

is described according to the derivation in [6] and is modeled using the eddy-viscosity hypothesis
and a turbulent Prandtl number. The modeled expression is

qsgsj = �̄Cs�̄2|S̃|
Prt

�T̃
�x j

(37)

The turbulent Prandtl number Prt is evaluated using the dynamic procedure (see Section 3.3).
A priori analysis of the magnitude of various terms in the filtered energy equation by Vreman
et al. [24] has shown that the fourth and fifth terms on the right-hand side of Equation (34) are
small compared with the sub-grid heat flux vector and can be neglected, especially at low and
moderate Mach numbers. Finally, the last term in the filtered energy equation (Equation (34)) is
similar to turbulent diffusion of sub-grid scale kinetic energy. The contribution of this term is
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again small compared with other sub-grid terms (see [6]), although there has been some attempts
to model it (e.g. [31]). We neglected the term here.

3.3. Dynamic procedure

We employ a dynamic procedure to evaluate the constants in the modeled sub-grid terms. The
dynamic model [26] is based on self-similarity of the inertial range of the turbulence energy
spectrum at different length scales. Therefore, the same functional form for the sub-grid quantities
can be assumed at the grid length scale �̄, representative of the computational mesh, and at a
larger test filter length scale �̂. The residual stress at the test filter level, Ti j , appears when the
test filter is applied to the grid filtered Navier–Stokes equation (Equation (33)). An identity due to
Germano is then obtained by applying the test filter on the residual stresses at the grid filter level
(
sgsi j ) and subtracting the resulting expression from Ti j :

Li j =Ti j − 
̂sgsi j = ̂�̄ũi ũ j −
̂̄�ũi ̂̄�ũ j

ˆ̄� (38)

Assuming that the same functional form (Smagorinsky model) could be used for the residual
stresses at both levels, we have the modeled forms as

Ti j =−2Cs�̂2 ˆ̄�| ˆ̃S|( ˆ̃Si j − 1
3
ˆ̃Smm�i j )+ 1

3Tkk�i j (39)


sgsi j =−2Cs�̄2�̄|S̃|(S̃i j − 1
3 S̃mm�i j )+ 1

3

sgs
kk �i j (40)

Substituting the above two expressions into Equation (38), we obtain the modeled expression for
Li j :

Lmod
i j =Cs�̄2Mi j − 1

3

sgs
kk �i j + 1

3Tkk�i j (41)

where Mi j is defined as

Mi j =2
̂

�̄|S̃|
(
S̃i j − 1

3
S̃mm�i j

)
−2

�̂2

�̄2
ˆ̄�| ˆ̃S|

(
ˆ̃Si j − 1

3
ˆ̃Smm�i j

)
(42)

where typically �̂/�̄=2 is assumed. Here, we neglect both 
sgskk and Tkk . Finally, using Lily’s [32]
least-square minimization procedure we obtain

Cs�̄2= Li j Mi j

MklMkl
(43)

where Li j is explicitly given by Equation (38). This procedure gives a local time-dependent
estimate of Cs�̄2, which is updated at each time iteration. It is worthwhile to note that the above
procedure computes the Smagorinsky length scale Cs�̄2 directly without the need to specify the
grid filter width �̄. This is advantageous in the current context considering that for unstructured
hexahedral grid it is difficult to provide a general expression for the filter width �̄.

Since the solution, Q̃, is discontinuous, the value of Cs�̄2 is also discontinuous across the
sub-domains. The sub-grid length scale is used to evaluate the sub-grid momentum flux (Equation
(35)), on which we impose continuity by averaging neighboring flux vectors. This is consistent
with the flux continuity of the multidomain method.
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The turbulent Prandtl number (Equation (37)) is evaluated using a dynamic procedure similar
to that described above. An expression similar to Germano’s identity (Equation (38)) is obtained
by subtracting the test filtered sub-grid heat flux (q̂sgsj ) from the heat flux defined at the test filter
level (Q j ):

K j =Q j − q̂sgsj =̂�̄T̃ ũ j −
̂̄�T̃ ̂̄�ũ j

ˆ̄� (44)

The same eddy diffusivity model is used for the heat flux at the test filter level:

Q j = −Cs ˆ̄��̂2| ˆ̃S|
Prt

� ˆ̃T
�x j

(45)

Therefore, substituting Equations (37) and (45) into Equation (44), the modeled form for K j is
obtained as

Kmod
j = Cs�̄2

Prt

⎡⎣ ̂

�̄|S̃| �T̃
�x j

− ˆ̄��̂2

�̄2
| ˆ̃S| � ˆ̃T

�x j

⎤⎦ (46)

Finally, following the procedure for computing the sub-grid viscosity, a least-square minimization
technique is used for evaluating the sub-grid Prandtl number

Prt= 2Ni Ni

K j N j
(Cs�̄2) (47)

where Ni is given by

Ni =
̂

�̄|S̃| �T̃
�xi

− ˆ̄�4| ˆ̃S| �
ˆ̃T

�xi
(48)

assuming that �̂/�̄=2 and Cs�̄2 is given by Equation (43).

3.4. Element level filtering

The dynamic procedure requires the definition of an explicit, low-pass filter for the test filtering
operation. Spectral filtering can be constructed using either discrete polynomial transform (DPT) or
interpolant projection (see [11]) over each element. DPT filtering can be conveniently applied for
methods with modal basis. For methods with nodal basis, the solution has to be first transformed
to modal basis before the DPT filter can be applied. Projection filtering, on the other hand, can
be constructed directly on the nodal basis. Since it does not require an extra transformation,
interpolant-projection filtering is more efficient than DPT for methods with nodal basis. Therefore,
for our nodal basis we use an interpolant-projection filter.

In the interpolant-projection filtering procedure, the filtered variable of degree N is obtained
by projecting the variable back and forth to a lower-order approximation of degree M defined on
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a subset of the original nodal values. As a first step the original function is interpolated from a
polynomial degree, N , to a polynomial of lower degree, M :

Q′(xi )=
N∑
j=0

L j (xi )Q(x̄ j ) (49)

where xi , x̄ j are the nodes corresponding to PM and PN , respectively. L j ∈PN is the Lagrange
interpolating polynomial. The above operation can be cast in terms of matrix–vector product:

Q′
i = I inti j Q j (50)

where

I inti j =
N∏

k=0,k �= j

xi − x̄k
x̄ j − x̄k

, i=0, . . . ,M, j =0, . . . ,N (51)

In the second step the function Q′(x) is projected back to the polynomial space N giving the
filtered function

Qfilt(x̄e)=
M∑
f =0

L f (x̄e)Q
′(x f ) (52)

Again, the above can be cast in matrix–vector form

Qfilt
e = I proef Q′

f (53)

with

I proef =
M∏

k=0,k �= f

x̄e−xk
x f −xk

, e=0, . . . ,N , f =0, . . . ,M (54)

In the staggered-grid method, this interpolation–projection operation could be applied to both
the nodal sets (Gauss–Gauss and Gauss–Lobatto nodes). We apply the filter on the Gauss–Lobatto
basis since it preserves the end values of the original function and ensures C0 continuity.

4. TESTING THE LES METHOD

We test the performance of the staggered-grid, multidomain LES method for two different classes
of turbulent flows. The first case study is on an isotropic decaying turbulence, and enables a
first-order investigation of the characteristics of the LES method, since the flow does not involve
turbulence shear production and specification of boundary conditions. Many sub-grid models have
been calibrated with this flow (e.g. [26, 33]). Then, we perform a more complex test by simulating
a plane, parallel channel flow at two different Reynolds numbers, which does involve boundary
condition specification and shear production.

4.1. Decaying isotropic turbulence

Computation of the decaying isotropic turbulence is performed within a periodic box of size 2�. An
initial correlated turbulence flow field is specified according to the procedure outlined by Rogallo
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Table I. Cases for decaying isotropic turbulence simulation.

Case hx ×hy×hz p M

DNS-RES 6×6×6 15 NA
DNS-URES 6×6×6 8 NA
LES-BASE 6×6×6 8 (N+1)/2
LES-RFNDp 6×6×6 10 (N+1)/2
LES-FILT 6×6×6 8 N−2
LES-RFNDh 7×7×7 8 (N+1)/2

[34] using a specified energy spectrum. We take an initial energy spectrum that was modeled
in Blaisdell et al. [35]. We refer to this spectrum and case as BMR93. The spectra are purely
solenoidal (divergence free) and there is no fluctuation in the thermodynamic variables. The spectra
are top hat and have non-zero contributions in the wavenumber range of 8�k�16. The initial
flow field for velocities (u,v,w), density (�), and temperature (T ) is obtained on a uniform grid
from the Fourier coefficients using a fast Fourier transform. The resultant flow field is correlated
according to the top hat spectra. Finally, the initial flow field on the Chebyshev–Gauss points is
obtained by interpolating from the Fourier grid using an eighth-order Lagrangian interpolation.
The interpolation was shown to be adequately accurate even for low polynomial orders in [16].
The initial root mean square (rms) Mach number is 0.3 with a peak Re	 ≈40.

4.1.1. Resolution and spectra. We start by establishing resolution requirements for a resolved
LES and the effect of resolution on the accurate representation of the spectrum. To this end, we
computed several cases with different h and p resolutions that are summarized in Table I. The
number of sub-domains in x , y, and z directions is given by hx , hy , and hz , while p represents
the order of polynomial in each sub-domain. LES-BASE is the base case with six domains in each
directions and p=8. LES-RFNDp and LES-RFNDh have a finer resolution of p=10 and h=7,
respectively. The DNS-RES and DNS-URES, respectively, refer to resolved and unresolved DNS
without filtering.

The total energy spectra in Figure 2 show that the resolved DNS (DNS-RES) is in good agreement
with previously published BMR93 data. The sharp, matching drop-off in the spectra indicates that
the DNS is resolved. The BMR93 case was computed with a Fourier-spectral method with 963

grid points. DNS-RES uses a comparable amount of degrees of freedom with h=6 domains in
each direction and p=15, yielding h∗(p+2)=102 Lobatto points in each direction, to resolve
the flow. This is consistent with the validation study in [16].

Comparison of the energy and dissipation spectra between DNS-URES, LES-BASE, and the
resolved DNS-RES (Figure 2) reveals that LES is clearly capturing the drop-off in the spectra
better than the under-resolved DNS. A zoom-in on the high-frequency part (k�7) of the spectrum
in Figure 3 underscores the improved capturing. LES-BASE resolves the flow up to k≈20, while
the increase of the spectrum for k�12 of the coarse DNS indicates an inaccurate solution. The
dashed-dashed line in the figure highlights the point up to which there is agreement between
the BMR93 spectra and DNS-URES, while the dashed-dot line shows the same for LES-BASE.
Clearly, the sub-grid model in LES is correctly modeling the dissipative effect of the small scale on
the turbulence, which leads to the steep drop-off of the spectrum at high wavenumbers. While in
a resolved DNS these small scales are accurately captured, in the under-resolved DNS insufficient
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Figure 2. Comparison of (a) energy spectra and (b) dissipation spectra at t=3.2 for isotropic turbulence.
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Figure 3. Same as Figure 2, zoomed in on high wavenumbers.

resolution is unable to accurately compute the high-frequency spectrum. Instead, the numerical
errors determine the behavior at the small scale. In a numerical method with very small dissipation
such as the multidomain spectral method, the numerical errors are not dissipated as in dissipative
method (e.g. upwind schemes). Rather, the numerical errors pile up at high wavenumbers, as seen
in the spectra. In LES, the scales up to k=20 are numerically resolved. At k�12 the LES sub-grid
model accurately models the dissipative term to the filtered equations.
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Figure 4. Decay of turbulent kinetic energy for isotropic turbulence. Inset: the relative
error for cases LES-BASE and DNS-URES.

Comparison of the turbulence kinetic energy (tke) decay rate for DNS-RES, DNS-URES, and
LES-BASE in Figure 4 confirms the improved dissipation modeling. At t=2, 75% of the initial
energy has decayed. The decay rate determined with LES is in closer agreement with DNS-RES than
the rate determined with DNS-URES. DNS-URES under-predicts the decay rate. The additional
dissipation provided by the sub-grid model in LES increases the turbulence dissipation and improves
comparison with DNS-RES. In the inset of Figure 4 we plot the percentage relative error, defined as
(tkeDNS-RES− tke)/tkeDNS-RES×100, for LES-BASE and DNS-URES. On average, the magnitude
of the error for the coarse DNS is twice that of the LES case.

We assess the resolution requirement for LES with multidomain Chebyshev method from the
cut-off wavenumber (kc=20). The total number of Lobatto points in each direction is 60 (6 sub-
domains × 10 Lobatto points). This implies that in order to resolve the spectrum till k=20, 3 points
are needed per wavelength. The value is further confirmed by the refined LES case (LES-RFNDp),
where the total number of Lobatto points is 72 (6 sub-domains × 12 Lobatto points) and the flow
is resolved up to k=27 (the cut-off is marked by the solid line). Therefore, again 72/27≈3 points
are required per wavelength. This resolution is consistent with the requirements reported in [16].

4.1.2. Dilatational and thermodynamic field. Decomposition of the velocity spectrum into
solenoidal (Figure 5(a)) and dilatational spectra (Figure 5(b)) shows that the dilatational spectrum
is two orders of magnitude less than the solenoidal spectrum, which is in agreement with BMR93.
The solenoidal velocity is associated with vorticity [36]. The vortical mode can generate both larger
length scales, through vortex merging, and smaller scales, through vortex stretching. Therefore,
the initial top hat solenoidal spectrum smoothes out at both low and high wavenumbers in time.

The dilatational velocity is associated with the acoustic and entropy mode [36]. In the acoustic
mode small length scales are generated through non-linear steepening of pressure waves, but there
is no direct mechanism for generation of larger length scales as in the solenoidal mode. Since
the simulation is started with zero fluctuations in dilatational velocity and thermodynamic fields,
the acoustic fluctuations were created through non-linear production from the solenoidal velocity
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Figure 5. Comparison of decomposed energy spectra at t=3.2 for isotropic turbulence: (a) solenoidal
spectrum and (b) dilatational spectrum.
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Figure 6. Decay of (a) pressure and (b) density fluctuations.

field. For small turbulent Mach numbers, the length scale of the acoustic fluctuations generated
from the vorticity fluctuations is much larger than the length scale of vortical turbulence [16, 35].
In time the acoustic length scales grow to become comparable to the size of the simulation
box and hence cannot be resolved. As a result the dilatational velocity spectra have a very flat
character at low wavenumbers. Case DNS-RES shows good agreement for the dilatational spectrum
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Figure 7. Decay of turbulent kinetic energy for DNS and LES with different test filter strengths. Inset:
the relative error for cases LES-BASE and LES-FILT.

up to k=15, but the sharp drop-off at high wavenumbers as in BMR93 is not observed. Since
the dilatational spectrum is two orders of magnitude less than the solenoidal spectrum, a much
higher resolution is required to capture the drop-off. This is evident from Figure 5(b), where the
spectrum for a DNS case with p=20 and h=6 shows better agreement with BMR93. However,
the dilatational spectrum has a very small contribution to the total spectrum and therefore the case
DNS-RES, which accurately resolves the solenoidal spectrum, is considered as the resolved DNS.
The dilatational spectra for the case LES-BASE are closer to BMR93 than DNS-URES (coarse
DNS). The normalized fluctuations of pressure and density are shown in Figure 6 for cases DNS-
RES, DNS-URES, and LES-BASE. Both pressure and density fluctuations initially grow with time
as energy is drained from the velocity field. After attaining peaks, which are approximately same
for both the quantities, they start decaying. The figure shows that LES-BASE predicts a more
accurate decay than DNS-URES.

4.1.3. Test filter effect. The Lagrange-interpolant-projection filtering requires two sets of Lobatto
grids (Section 3.4). The polynomial space of degree N is fixed by the polynomial approximation
used within each sub-domain for the flow computation, i.e. N =10 when p=N−2=8. On the
other hand, the size of the lower-degree grid of order M used for the interpolation can be varied
independently and determines the strength of the test filter. With decreasing M , the strength and
consequently the effect of the filter is larger. To investigate how the degree M of the lower-order
grid affects the flow, LES results based on two test filters are compared and listed as LES-BASE
and LES-FILT in Table I. The lower-order grid for the test filter of LES-BASE is of degree
M=(N+1)/2, while the test filter in LES-FILT is of degree M=N−2.
The decay of tke for the two LES cases is compared with DNS-RES in Figure 7. The percentage

relative errors are shown in the inset of the figure. LES-BASE has a lower error for t<1, while
for t>1 the error magnitude is lower for LES-FILT. For both cases the predictions are within 5%
of the reference case, indicating that the choice of the filter strength has small influence on the
decay of tke, since the sub-grid viscosities are nearly equal in both cases. Decays of normalized
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Figure 8. Decay of (a) pressure and (b) density fluctuations for DNS and LES
with different test filter strengths.

fluctuations of pressure and density (shown in Figure 8), however, show considerable differences.
For both quantities, the decay rate for LES-FILT has larger deviation from the reference DNS case
(DNS-RES) as compared with LES-BASE. Energy cascade in the acoustic and entropy mode is
linked to much faster time scale of evolution than the solenoidal mode. Therefore, the LES cases,
which are inherently under-resolved, fail to capture some of these fine-scale acoustic phenomenon.
The weaker test filter (M=N−2) possibly allows faster accumulation of numerical noise, thereby
contaminating the solution at the highest resolved wavenumber. This causes the error in the decay
of the thermodynamic quantities. With a stronger test filter, on the other hand, the numerical noise
is eliminated and the acoustic scales are better represented. Therefore, we conclude that when the
effect of the test filter is larger, more small-scale acoustic waves are modeled.

4.1.4. h/p Resolution study. One of the distinguishing aspects of spectral/hp element methods
is the feature of controlling the spatial resolution at two different levels. The resolution can be
altered either by changing the number of sub-domains (h-refinement) or by changing the order of
the polynomial within each sub-domain (p-refinement).

Here, we study the effect of independently changing the h and p resolutions on the LES results.
Cases LES-BASE and LES-RFNDp have the same h-grid but different polynomial orders, while
cases LES-BASE and LES-RFNDh have the same polynomial order but different h-grids. The total
number of Lobatto points for cases LES-RFNDp and LES-RFNDh is 72 and 70, respectively, which
is comparable. The total energy spectra for cases LES-BASE, LES-RFNDp, and LES-RFNDh
are shown in Figure 9. As the polynomial order is increased from p=8 (LES-BASE) to p=10
(LES-RFNDp), the maximum resolved wavenumber increases from k=20 (the cut-off is marked
by the dashed-dashed line) to k=27 (the cut-off is marked by the solid line). Whereas, increasing
the number of sub-domains in each direction from h=6 (LES-BASE) to h=7 (LES-RFNDh), the
maximum resolved wavenumber increases to k=25 (the cut-off is marked by the dashed-dot line).
This indicates that p-refinement resolves the flow better than h-refinement, which is consistent
with the h/p spectral convergence [9].
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Figure 9. h/p Resolution study: (a) energy spectra and (b) dissipation spectra.

4.1.5. Explicit filtering without the sub-grid model. Recently an alternate approach to LES, which
does not involve any sub-grid modeling, has been proposed (see [37–39]). Domaradzki et al.
[37] applied a periodic filtering to the flow variables in their under-resolved spectral simulations
without employing any sub-grid model. Bogey and Bailly [39] applied a similar technique for their
high-order finite difference simulation of compressible jets. A selective filter was applied to the
density, momentum �ui , and pressure to remove the high wavenumbers close to the grid cut-off.
The filter was designed to eliminate grid-to-grid oscillations without affecting the resolved scales.

The above studies motivated us to investigate the effect of using simply a Lagrange-interpolant
filter (described in Section 3.4) for an under-resolved simulation, without including the sub-grid
model. The filter is applied at every time step on density, momentum �ui , and pressure for a
case having the same resolution as DNS-URES. It is imperative to use a filter that does not
affect the large scales of the flow but at the same time prevents the numerical noise (inherent
in under-resolved simulations with high-order methods) from contaminating the solution at high
wavenumbers. Therefore, we test filters of different strengths to determine the most effective filter.
Figure 10 compares the spectra for three different filters with the resolved DNS. We observe that
the filter (M=N−3) affects the large scales resulting in an inaccurate representation of the spectra
at low wavenumbers. For filters stronger than M=N−3 the solution was not stable. On the other
hand, the use of weaker filters (M=N−1 and M=N−2) resolves the large scales accurately,
with M=N−2 providing a slightly better drop-off of the spectra.

We further investigate the role of the filter by comparing the spectra with that of the LES with
the sub-grid model (LES-BASE). Figure 11 shows the spectra from the filtering case M=N−2
(DNS-URES-FILT) along with DNS-URES and LES-BASE. Comparison of DNS-URES and DNS-
URES-FILT reveals that filtering of the solution slightly improves the spectra. While DNS-URES
captures the spectra up to k=12, DNS-URES-FILT is accurate up to k=14. However, LES-BASE
is more accurate than DNS-URES-FILT, implying that for our multidomain spectral simulations,
the use of only a filter does not provide adequate dissipation and the SGS model is necessary to
account for the sub-grid dissipation accurately.
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Figure 10. Effect of filtering the under-resolved simulation (no SGS model) with different filter strengths:
(a) energy spectra and (b) dissipation spectra.
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Figure 11. Comparison of explicit filtering and SGS model as the sub-grid dissipative mechanism:
(a) energy spectra and (b) dissipation spectra.

4.2. Turbulent channel flow

Next, the LES methodology is tested for a three-dimensional, subsonic, plane, parallel channel
flow. The presence of the wall significantly increases the complexity of the flow, the analysis,
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Figure 12. Schematic of channel flow geometry (not to scale).

and the LES implementation as compared with the isotropic turbulence case. Traditionally, the
near wall region in LES of wall-bounded flows is either resolved with a fine mesh like in DNS
or modeled [40]. Moin and Kim [41] performed LES of incompressible channel flow, with a
Fourier-spectral-finite difference scheme using a non-dynamic eddy-viscosity model. Application
of the dynamic Smagorinsky model to incompressible channel flow at high Reynolds numbers
was studied by Piomelli [42], where a Fourier–Chebyshev pseudo-spectral collocation scheme was
used. Wang and Pletcher [43] performed LES of low-speed flows with significant heat transfer at
the wall, using a low-Mach-number algorithm coupled to a dynamic eddy-viscosity model. LES of
compressible channel flow in both subsonic and supersonic regimes, at a bulk Reynolds number of
3000, was performed by Lenormand et al. [44]. They used fourth- and second-order finite difference
to discretize the convective and diffusive terms, respectively. The sub-grid scales were represented
through Smagorinsky and scale similarity models. Channel flow was also used for validating LES
methodologies with finite element (e.g. [5]) and spectral element (e.g. [11]) methods. In [5] it
was shown that the finite element method gave better prediction of the normal Reynolds stresses
over a second-order central difference scheme. In their validation study, Blackburn and Schmidt
[11] found that test filtering in Legendre basis gave the best result for the mean velocity profile,
while the projection filter provided the best agreement with DNS for both normal and shear
stresses.

4.2.1. Computational model. A schematic of the computational domain is shown in Figure 12.
The domain extents are Lx =6, Ly =2, and Lz =2 in the streamwise, spanwise, and wall-normal
directions, respectively. Periodic boundary conditions are employed in the streamwise and spanwise
directions, while the conservative isothermal wall boundary condition of Jacobs et al. [45] is used
for the bottom and top walls. The flow is simulated at bulk Reynolds numbers of Re f =3000
and 10000 based on channel half width and bulk velocity. The corresponding friction Reynolds
numbers were Re
 ≈180 and Re
 ≈570, respectively. The Mach number is taken to be Ma=0.4
based on bulk velocity and wall temperature (Twall). Following Lenormand et al. [44], a time-
dependent forcing term is included in the streamwise momentum equation in order to drive the
flow. The velocity field is initialized with the laminar parabolic profile for u with a small random
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disturbance superimposed on it:

u(z)=−6

[( z
2

)2− z

2

]
(1+�), v=0, w=0 (55)

where � is a 10% random disturbance. The temperature is initially set to laminar Poiseuille profile:

T (z)=Twall+
{
3(�−1)

4Pr
[1−(z−1)4]

}
(56)

Here Twall=6.25 is the wall temperature and Pr =0.72 is the Prandtl number. The density is
initially set as constant. The initial pressure is calculated from the constant density, the initial
temperature, and the ideal gas law. Previous studies [16, 46] have shown that at Ma=0.4, plane
parallel channel flow is pseudo-incompressible. Therefore, our simulation results are compared
with the incompressible DNS study of Moser et al. [47] and the experimental measurements of
Niederschulte et al. [48].

4.2.2. Low-Reynolds-number simulation. The first test case is for Re=3000. This is close to
the lowest Reynolds number at which a fully developed turbulent channel flow can be sustained
without relaminarization. The computational domain (Figure 12) is decomposed with 10 sub-
domains in the streamwise (x) and spanwise (y) directions, while 16 sub-domains are taken in
the wall-normal (z) direction. The sub-domains in the wall direction are stretched out toward the
center of the channel with a cosine distribution. The polynomial order within each sub-domain
is taken as p=6. The total number of Lobatto points for the above h/p grid is 819 200. The
test filtering is performed along all the coordinate directions. It is known that when the filter is
a function of space, as is the case for a non-uniform grid, additional terms appear in the filtered
Navier–Stokes equation (see [49]). However, the magnitude of these terms is small when the
grid non-uniformity is not large. An LES simulation of isotropic turbulence with a non-uniform
sub-domain distribution confirmed this. The spectra of the non-uniform sub-domain computation
(not shown) were in excellent agreement with the uniform grid simulation. Therefore, the use of
non-uniform sub-domains for the channel flow does not pose a problem. The sub-grid constant
Cs�̄2 and Prt are obtained by averaging the right-hand side of Equations (43) and (47) along
homogeneous (x–y) planes within each sub-domain:

Cs�̄2=
〈
Li j Mi j

MklMkl

〉
, Prt=

〈
2Ni Ni

K j N j

〉
(Cs�̄2) (57)

where 〈〉 indicates averaging. This averaging technique was proposed by Zhao and Voke [50] and
was shown to be more stable and give better agreement with the asymptotic behavior of turbulent
length scales near the wall as compared with the Germano–Lily averaging approach [26]. The
sub-grid viscosity is computed once in every time step.

The Favre-averaged streamwise velocity normalized with the skin friction velocity, plotted in
Figure 13, is in close agreement with that in Moser et al. [47] near the wall. The maximum
relative error of the LES prediction in the near wall region is 7%. Therefore, the dynamic model is
able to represent the near wall structures accurately. This observation is consistent with previous
implementations of the dynamic Smagorinsky model with both finite difference and finite volume
methods. The LES result is also compared with the ‘law of the wall’ in the figure. The LES result
matches with the linear u+ = z+ law in the viscous sub-layer (z+�5). The agreement in the log-layer
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Figure 13. Mean normalized streamwise velocity plotted in wall coordinates for channel flow at Re=3000.
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Figure 14. Streamwise normal stresses for channel flow at Re=3000.

is also good, the maximum deviation from the reference data being only 3%. It can be concluded
that the first-order statistics are accurately recovered by LES, with approximately one-third the
resolution of DNS by Jacobs et al. [16], who used the same Chebyshev spectral multidomain
method, and Moser et al. [47], who used a pseudo-spectral code. The gain in computational time
is slightly offset by the computational overhead of the sub-grid model. The cost of LES was 1.44
times that of the simulation without the sub-grid model on the same grid.

In Figure 14, the resolved-scale Favre-fluctuating streamwise turbulent stress computed with
LES is compared with the DNS and the experiment. The results are normalized with u2
 and plotted
in wall coordinates. It is noted that although the usual practice in a posteriori testing is to compare
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Figure 15. (a) Normal stresses in the spanwise and wall-normal directions and (b) shear
stress for channel flow at Re=3000.

the resolved-scale Reynolds stresses from LES directly with unfiltered DNS or experiment, the
two quantities are not equivalent and therefore are not expected to match exactly. The location for
the peak streamwise fluctuation is accurately represented by LES, although there is a 4% under-
prediction in the magnitude of the peak. Except for the peak value, the resolved-scale stress from
LES compares well with the DNS and the experiment. The Favre-fluctuating spanwise ({v′′v′′}+)

and wall-normal ({w′′w′′}+) stresses are shown in Figure 15(a). The peak {v′′v′′}+ and {w′′w′′}+
values are under-predicted by 6% and 9%, respectively. The otherwise overall good agreement
in the normal stresses indicates that the primary energy containing motions are resolved in the
simulation. Finally, Figure 15(b) shows that LES under-predicts the resolved-scale shear stress,
with a maximum difference of 10% with the DNS. The experimental data show a large scatter
across the channel.

4.2.3. High-Reynolds-number simulation. LES is considered robust if it is stable and accurate at
a high Reynolds number with a coarse grid. Here, we demonstrate the robustness of our LES
methodology by simulating the same channel configuration as in the previous section at a Reynolds
number of Re f =10000 (Re
 ≈570). We keep the h resolution the same as before, while increasing
the polynomial order within each sub-domain to p=8. The total number of Lobatto points is 1.6
million. The LES results are compared with DNS data of Moser et al. [47] for Re
 ≈590.

Figure 16 shows that the LES mean velocity profile in wall coordinates is in close agreement
for z+<10 with DNS as in the low-Reynolds-number channel flow. The linear law of the wall is
well represented by LES. However, there are differences for z+>10, where the LES under-predicts
the mean velocity. The under-prediction is attributed to the under-resolution in the outer layer and
the type of test filter used here. The number of grid points used for DNS is a factor of 20 times
larger than the number of grid points used for LES. The effect of under-resolution was investigated
in several studies. In Bagget et al. [51] the resolution requirement for LES of shear flows using
the dynamic Smagorinsky model was studied through a series of channel flow simulations at a
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Figure 16. Mean normalized streamwise velocity plotted in wall coordinates for channel flow at Re=10000.

high Reynolds number (Re
 ≈1000). They varied the resolution in the outer layer while keeping
the near wall mesh the same, which essentially resolved the near wall structures. It was shown
that the sub-grid shear stress predicted by the dynamic model in a posteriori simulation was
less than the shear stress obtained using filtered DNS data. Such under-prediction in shear stress
directly affects the averaged velocity profile. Using the data from [51], Jimenéz and Moser [52]
showed that the fractional error in prediction of mean velocity is roughly proportional to and is
of the same order as the fraction of shear stress carried by the sub-grid model. Therefore, they
concluded that the prediction in mean velocity can be improved by adjusting the resolution so that
the amount of shear stress carried by the sub-grid model is small. Under-prediction in the averaged
velocity was also observed by Blackburn and Schmidt [11], for their spectral element LES using
interpolant-projection-type filtering.

Figure 17 compares the resolved-scale Favre-fluctuating streamwise turbulent stress, again
normalized with u2
 , from LES with Moser et al. The location of the peak is again accurately
captured by LES, while the magnitude is under-predicted by 4%. In contrast to the low-Reynolds-
number case, where an excellent agreement was seen, the LES stresses have slightly lower value
for z+>70, with a maximum under-prediction of 13% at z+ =200. The spanwise ({v′′v′′}+) and
wall-normal ({w′′w′′}+) turbulent stresses, shown in Figure 18(a), on the other hand, show a slight
over-prediction for z+<300, the maximum differences being 11% and 7%, respectively. The over-
predicted stresses are attributed to the under-resolution and the modeling of the sub-grid stresses.
In a posteriori LES it is generally difficult to isolate the effect of grid resolution and the sub-grid
model on the Reynolds stresses, especially for inhomogeneous flows.

However, it was shown in [53] that the flow tends to be over-dissipative at a marginal resolution
resulting in an over-prediction of normal stresses. Such an over-prediction of stresses across the
channel was also observed in the spectral element simulation of Blackburn and Schmidt [11]. The
resolved-scale shear stress (Figure 18(b)) is also in good agreement with the DNS data. The values
are over-predicted till z+<300, with a maximum difference of 3.5%.
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Figure 17. Streamwise normal stresses for channel flow at Re=10000.
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Figure 18. (a) Normal stresses in the spanwise and wall-normal directions and (b) shear
stress for channel flow at Re=10000.

5. CONCLUSIONS

A robust, high-order, spectral element large-eddy simulation (LES) technique for compressible
flow has been developed. The high-order Chebyshev approximation controls the numerical errors,

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 61:311–340
DOI: 10.1002/fld



LARGE-EDDY SIMULATION OF COMPRESSIBLE FLOWS 337

while the flux-based method ensures a conservative scheme. The sub-grid stress and sub-grid heat
flux are represented by dynamic models, which, in combination with the unstructured multidomain
method, facilitate a flexible methodology that could be applied for complex flow geometries.

The evaluation of the LES code in a decaying isotropic case at Re	 ≈40 and Marms=0.3
reveals that the LES method computes the turbulence spectrum far more accurately than does the
under-resolved DNS. Since the numerical method has very little dissipation, the numerical error
generated in the under-resolved DNS computations increases the energy in the high-frequency part
of the energy spectrum. The LES model correctly models the physical dissipation and agrees with
the spectrum of a resolved DNS. The current LES method improves over lower-order LES methods
that can have numerical dissipation, thus lowering the energy in the high-frequency range. The
rate of decay of tke and fluctuations in thermodynamic quantities are more accurate for LES than
for coarse DNS. Lack of numerical dissipation in a higher-order LES method enables a reliable
analysis of the role of the sub-grid model and test filtering in a posteriori computation. From
the cut-off wavenumbers for the LES cases, we deduce that the multidomain LES requires only 3
Lobatto grid points per resolved-scale wavenumber, which is significantly less than the lower-order
LES requirements. The study of the effect of the test filter strength indicates that M=(N+1)/2
results in better prediction of the decay of thermodynamic fluctuations than M=N−2, where
N is the degree of the Lobatto grid used for the solution, while M is the degree of the lower-
order Lobatto grid used for constructing the test filter. Analysis of p and h convergence for LES
demonstrates that p-refinement is more efficient than h-refinement, which is consistent with the
h/p convergence theory. Investigation into the effect of filtering the under-resolved DNS without
employing the sub-grid model reveals that though the spectrum improves with filtering, it is still
much less accurate than the case with the sub-grid model. This implies that using only a filter
does not provide adequate dissipation to drive the energy cascade to the unresolved scales and the
use of the sub-grid model becomes imperative.

LES tests on the turbulent channel flow with the near wall area resolved illustrate the success
of the new LES methodology to predict wall-bounded, inhomogeneous turbulent flows at low and
moderately high Reynolds numbers. LES of the channel flow at Re=3000 shows that the method
accurately computes the flow for z+<10, consistent with the correct asymptotic variation of the
sub-grid length scale with the distance from the wall as enforced by the dynamic Smagorinsky
model. LES under-predicts the peak value of normal stresses, also consistent with the predictions
of LES based on finite difference methods. Since the multidomain method is not dissipative, the
under-prediction is attributed to the under-dissipative nature of the dynamic model.

The LES methodology was shown to be robust, i.e. it is able to predict high-Reynolds-number
flows with fair accuracy on a relatively coarse grid. Robustness was demonstrated by a simulation
of the channel flow at Re=10000. The mean flow and the Reynolds stress are in fair agreement
with the published DNS result. The dynamic model is known to under-predict the sub-grid shear
stresses in turbulent channel flows, especially at high Reynolds numbers. This leads to the error
in the prediction of averaged velocity unless the resolution is increased sufficiently to reduce the
proportion of the shear stress carried by the model. The marginal resolution in our simulation
results in under-prediction of the average velocity in the outer layer at z+>10 and larger deviation
of the Reynolds stresses compared with the low-Reynolds-number case.

With tests on the isotropic turbulence and the turbulent channel flow, the characteristics of
the LES methodology have been exposed. Further research is currently under way to apply the
methodologies presented here, for simulation of more complex flows such as the flow over a
backward-facing step. Complex flow elements including upstream boundary layer development,

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 61:311–340
DOI: 10.1002/fld



338 K. SENGUPTA, G. B. JACOBS AND F. MASHAYEK

separation at the step, unstable curved shear layer, turbulent reattachment, and turbulent flow
recovery make the flow a challenging case for our LES methodology.

The multidomain spectral method is of the same type as the discontinuous Galerkin method and
the discontinuous finite element method. The conclusion and observations from this paper thus
extend to this broader class of numerical methods.
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